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Abstract

The subject of this paper is Hadamard Finite Part (HFP) and Cauchy Principal Value (CPV) representations of
certain singular integrals. Of primary concern here are HFP interpretations of strongly singular integrals for which

CPV interpretations also exist. A relationship between the two is stated and proved. This matter is then illustrated
by two examples and also discussed in the context of singular boundary integral equations (BIEs) for linear
elasticity. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper addresses CPV and HFP integrals in the context of boundary integral equations (BIEs) for

linear elasticity. It is concerned with Hadamard Finite Part (HFP) interpretations of strongly singular

integrals for which Cauchy Principal Value (CPV) interpretations also exist. A relationship between the
two is ®rst stated and proved. This relationship is illustrated by two examples and is then discussed in

the context of certain standard and hypersingular BIEs (HBIEs) that are commonly used in boundary

element method (BEM) formulations for linear elasticity. The principal goal of this paper is to help better
understand HFP integrals in simple situations in which the CPV versions of the same integrals also exist.

Also, a false statement in an earlier paper (Toh and Mukherjee, 1994) is corrected here.

First some de®nitions in order to keep this presentation clear. Let m (m= 1,2 or 3) be the dimension

of the domain of an integral, and its integrand be of O(rÿn), as r=vyÿxv 4 0. Here, x is a source or
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collocation point and y is a ®eld or integration point. In the interest of simplicity, n is also taken to be a
positive integer. Then, standard de®nitions regarding the nature of the integrals, as shown in Table 1,
apply. Also, a one-dimensional (1-D) integral with a logarithmically singular integrand is called weakly
singular in this work.

It is well known that (e.g., Krishnasamy et al., 1990; Toh and Mukherjee, 1994; Martin, 1991) some
strongly singular integrals (e.g., f1ÿ1 dx/x ) admit ®nite CPVs and others (e.g., f1ÿ1 dx/vxv) do not, while
hypersingular integrals (e.g., f1ÿ1 dx/x 2), in general, do not have ®nite CPVs. It is interesting to note,
however, that all the integrals above admit ®nite HFPs.

The issue of HFP interpretations of strongly singular and hypersingular integrals has been discussed
in detail in Toh and Mukherjee (1994). This paper has presented a new interpretation and regularization
scheme for such integrals. This interpretation is based on the limit to the boundary (LTB) concept as is
clear from Proposition 4.1 of Toh and Mukherjee (1994). Results obtained from this interpretation agree
with the results from Krishnasamy et al. (1990) on scattering of acoustic waves and are completely
consistent with complex variable formulations for 2-D BIEs (Hui and Mukherjee, 1997). Finally, in a
recent paper (Mukherjee and Mukherjee, 1998), this HFP interpretation has been shown to be consistent
with a Hypersingular Boundary Contour Method (HBCM) formulation for 3-D linear elasticity.

It is stated in Toh and Mukherjee (1994), however, that the HFP interpretation presented in that
paper reduces to the CPV for a strongly singular integral for which the CPV exists. This is not true. In
fact, the correct relationship between the two, in such cases, is:

IHFP � ICVP � lim E40IE �1�
where IHFP and ICPV, respectively, denote the HFP and CPV values of an integral I, and IE is the value
of the same integral on an appropriate ``inclusion'' or ``exclusion'' zone around a point at which the
integral becomes singular (e.g., see Fig. 1 in Guiggiani et al., 1992). This point can be a regular point on
the boundary of a body as well as one that lies on an edge (for 3-D problems) or at a corner (for 2-D
or for 3-D problems.)

This paper is organized as follows. A proof of Eq. (1) is ®rst presented for 1-D integrals and then for
2-D integrals in 3-D regions. This is followed by an example of an 1-D integral in a 2-D region that
includes collocation at a corner, and a 2-D surface integral in a 3-D region concerning evaluation of
solid angles. The solid angle example presents a generalization of a formula that has recently appeared
in the literature (Liu, 1998). Finally, the standard (displacement) and hypersingular (stress) BIEs of
linear elasticity are considered in this context.

It is important to state the reasons for including these examples in this paper. The ®rst, and obvious
reason, of course, is to verify that Eq. (1) remains valid in these situations. Also, perhaps more
importantly, these examples illustrate the computation of the HFPs of certain integrals that appear in
the BEM, and the relationships of these HFPs with the LTB concept and with the CPVs of these
integrals. This author believes that these illustrations are of value to researchers interested in this ®eld.

Table 1

Various types of integrals

n=0 Regular

n$0<m Weakly singular

n=m Strongly singular

n=m+1 Hypersingular
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2. CPV AND HFP

This section presents proofs of Eq. (1), ®rst for 1-D and then for 2-D integrals. This is followed by
two examples.

2.1. A proof in one dimension

A proof of Eq. (1), for 1-D CPV integrals, is presented here. Referring to Section 2 in Toh and
Mukherjee (1994), let t:I=[-a,b ]4R be a function with a singularity at x= 0 of the form t(x )0O(1/
x ) and f:I=[-a,b ]4R be a regular function of the class C 0,a at x=0. One is interested in the integral
fbÿat(x )f(x )dx. Since, by assumption, its CPV exists, the quantity limE40fEÿEt(x )dx must be ®nite. Then,
according to Eqs. (2±4) of Toh and Mukherjee (1994),

b

ÿa
t�x�f�x� dx �

�ÿE
ÿa

t�x�f�x� dx�
�b
E
t�x�f�x� dx�

�E
ÿE
t�x��f�x� ÿ f�0�� dx� f�0�

�E
ÿE
t�x� dx �2�

Canceling the last term on the right hand side of the above equation with the corresponding integral in
the previous term, and then taking the limit as E4 0, one immediately gets:

b

ÿa
t�x�f�x� dx �

�
ÿ
b

ÿa
t�x�f�x� dx� lim E40

�E
ÿE
t�x�f�x� dx �3�

This is Eq. (1). Please note that in the above equations
�
- denotes the CPV and the HFP of an

integral.

2.2. A proof for 2-D integrals in 3-D regions

A proof of Eq. (1), for 2-D CPV integrals, is presented here. Referring to Section 3 in Toh and
Mukherjee (1994), let S be an (open or closed) surface in R3 and the function t(x,y):S4R have its only

Fig. 1. Geometry of the simple example.
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singularity at y=x of the form t(x,y)0O(1/r 2) with r=vxÿyv. Also, let f:S 4 R be a regular function
of the class C 0,a at x $ S. Now, let SE be an inclusion or exclusion neighborhood of x $ S. If S is a closed
surface that encloses the body B, SE is an inclusion neighborhood of x if the boundary point is
approached from inside B, and is an exclusion neighborhood if the boundary point is approached from
outside B. This neighborhood SE is chosen in a symmetric manner consistent with the usual de®nition of
the CPV integral given below. Finally, it is assumed that this CPV integral exists, i.e., limE40fSE

t(x,y)
f(y) ds(y) is ®nite.

From Eq. (10) of Toh and Mukherjee (1994), with x $ S, one has:

S

t�x, y�f�y� ds�y� � hgSE , fi � f�x�A�SE� �
�
SnSE

t�x, y�f�y� ds�y� �
�
SE

t�x, y��f�y� ÿ f�x��
ds�y� � f�x�

�
SE

t�x, y� ds�y�
�4�

As in the previous proof in one dimension, canceling the last term on the right-hand side of the above
equation with the corresponding integral in the previous term, and then taking the limit as E 4 0, one
immediately gets:

S

t�x, y�f�y� ds�y� �
�
ÿ
S

t�x, y�f�y� ds�y� � lim E40

�
SE

t�x, y�f�y� ds�y� �5�

which is Eq. (1).

2.3. An example that involves the angle between two lines

Consider the integral:

I �
�
C

df
ds

ds �6�

on the semicircular contour shown in Fig. 1a. Here, the angle f is de®ned as:

f�x, y� � arc tan

�
y2 ÿ x2

y1 ÿ x1

�
�7�

and s is the distance measured along the contour. Also, C=CR[C0.
It can be shown that (e.g., Ghosh et al., 1986) that, at a regular point on C, (df/ds )=(1/r )(@r/@n ),

where n is the unit outward normal to C at that point. Thus, (df/ds )0O(1/r ) as y4 x.
It is easy to show that:

J �
�
CR

df
ds

ds � p �8�

ICPV�x � 0� �
�
ÿ
C

df
ds

ds � p� lim E40

"�B
A

df
ds

ds�
�D
C

df
ds

ds

#
� p �9�
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IE �
� 2p

p

df
ds

ds � p �10�

To calculate IHFP, observe that for x (C:

�
C

df
ds
�xxx, y� ds�y� � 2pg�xxx� �11�

(with g(x)=1 for x inside the body and g(x)=0 otherwise), so that, using Proposition 4.1 of Toh and
Mukherjee (1994) and taking the limit as z4 x $C, one has:

IHFP �
C

df
ds
�x, y� ds�y� � 2pg�x� �12�

where g(x)=1 for x4 x from inside the body and g(x)=0 for x4 x from outside (see, also, Lutz et al.,
1992).

In this example, since x is inside the body, g(x)=1, and Eq. (1) is veri®ed.
It is very interesting to note that with x=0 at a corner of the contour C (Fig. 1b), one gets ICPV=p/2,

IE=3p/2 and IHFP=2p. This veri®es the fact that Eq. (1) remains valid with x at a corner of C.
For the case in which x starts outside the body, an exclusion zone is used. Now, with x=0 a regular

point on C, ICPV=p, IE=ÿp and IHFP=0. If x lies at a corner as in Fig. 1b, ICPV=p/2, IE=ÿp/2 and
IHFP=0.

These results are summarized in Table 2.
This example is concerned with a special integral for which Eq. (11) remains valid for a ``reasonable''

(i.e., simple, closed, piecewise continuous, counterclockwise) contour of any shape Ð the situation being
analogous to some complex contour integrals that allow certain deformations of the contour without
changing the value of the integral. It is interesting to note that, for this example, the value of IHFP

depends on the approach (from inside or from outside a body) in the LTB, but not on whether the
boundary point is regular or not. The reverse is true for the ICPV, i.e., its value does not depend on the
approach in the LTB but does depend on the nature of the boundary point. Of course, in all cases, Eq.
(1) remains valid.

It is important to remind the reader that the above example pertains to IHFP integrals for which ICPVs
exist. The situation is much more complicated when one wishes to obtain IHFP values of hypersingular
integrals (for which, in general, ICPV values do not exist), at nonsmooth points on the boundary of a
body (see, for example, ManticÏ and ParõÂ s, 1995). The IHFP interpretation given in Toh and Mukherjee
(1994) only pertains to smooth points on the boundary of a body.

Table 2

Values of integrals in the simple example

Regular point Corner point

LTB from inside IHFP=2p IHFP=2p
ICPV=p ICPV=p/2

LTB from outside IHFP=0 IHFP=0

ICPV=p ICPV=p/2
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2.4. An example that involves the solid angle

Consider the segment APB (called the surface S ) of the surface of a sphere @B in Fig. 2a. The
purpose here is to ®nd the solid angle subtended by S (a) at a point P on S (the CPV), (b) at a point pI
directly below P (i.e., inside the sphere) in the limit pI 4 P (the HFP with approach from inside the
sphere) and (c) same as case (b) but now with pO directly above P (i.e., the HFP with approach from
outside the sphere).

The usual formula for the solid angle subtended by a surface S at a point p is:

O� p� �
�
S

r � dS

r3
�
�
S

�r � n� dS

r3
�13�

where r0r( p,q ) is the vector from p to a point q on S, r is the magnitude of r and n is the unit normal
to S at q. Here, n is chosen to point outwards from the sphere surface @B.

2.4.1. The CPV integral
Let S be an open surface which is part of a closed surface @B. A formula for determining the solid

angle, subtended by S, at a point on it (i.e., the singular integral case) has been derived in Appendix E
of Mukherjee and Mukherjee (1998). This is:

Fig. 2. Solid angle subtended at a point by a surface.
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O�P � � OCPV �
�
L

a3�a2da1 ÿ a1da2�
r
ÿ
a2
1 � a2

2

� �14�

in terms of local coordinates (a1, a2, a3) at P with a3 along the outward normal to @B at P and a1 and
a2 along two mutually perpendicular tangential directions to S at P. Also, L is the bounding contour of
S.

This formula is now applied to the surface S shown in Fig. 2a. With a1=RÃcos(y ), a2=RÃsin(y ),
a3=ÿd=ÿRÃ/tan (b ) and r=RÃ/sinb, one immediately has:

OCPV � 2p cos�b� �15�

2.4.2. The HFP integrals
This time, one needs a solid angle formula for the nearly singular case when the point p is very near S

but not on it. Such a formula is available in Liu (1998). A generalized version of this formula, valid for
points on either side of the surface S, and also adapted to the de®nition of the solid angle given in Eq.
13, is:

O� p� � sgn�År � Ån�
� 2p

0

�
1ÿ cos F�y�� dy �16�

The requirement for this formula to be valid is that one has a local coordinate system (x,y,z ) at p
oriented such that the positive z-axis intersects the surface S. Also, F is the angle between the positive z-
axis and r( p,q ) with q $ L, and y is the angle between the positive x-axis and the projection of r in the
xy plane. Finally, sgn denotes the sign of the dot product of r-0 r( p,q- ) and n- . Here S

-
is part of the

surface of a sphere, centered at p, radius r-, on which S is projected such that q $ S 4 q- $ S
-
and n, the

normal to S, 4n- , the normal to S
-
(Fig. 2c). Note that the vectors r- and n- are always parallel. With n

de®ned as the outward normal to @B, they point in the same direction when p is inside @B and in
opposite directions when p is outside @B. In Liu (1998), this signum function is always +1.

For the example shown in Fig. 2, F=pÿb, so that, taking the LTB, Eq. (16) gives:

O� pI� � OHFPI � 2p�1� cos�b�� �17�
Note that, for the full sphere, b=0 and O( pI)=4p as expected.
The integral limE40IE can be obtained by letting the cap APB in Fig. 2a shrink by letting A4 P and

B 4 P. Now, b 4 p/2, so that, from Eq. (17), limE40IE=2p. This fact is also evident by choosing a
hemispherical inclusion zone SE centered at P and noting that the solid angle subtended by SE at P is 2p.
Therefore, Eq. (1) remains valid.

Finally, the point pO in Fig. 2a is considered. Now, the z axis points down so that F=b. Also, the
signum function is ÿ1. Therefore:

O� pO� � OHFPO � 2p� cos�b� ÿ 1� �18�
For the full sphere, O( pO )=0 as expected.
This time limE40IE=2p[cos(b )ÿ1]b=p/2=ÿ2p, a result that can also be obtained by considering a

hemispherical exclusion zone centered at P. Of course, Eq. (1) is again valid.

3. Applications in BIEs of linear elasticity

It is common practice in the BIE literature (dating back to Rizzo (1967) for linear elasticity), to write
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a strongly singular integral, for which a ®nite CPV exists, in the form:

I � ICPV � lim E40IE �19�
One then proceeds to evaluate each of these integrals as the inclusion or exclusion zone shrinks to zero
(e.g., Guiggiani and Casalini, 1987). Of particular interest here is the interpretation of the left hand side
of Eq. (19) as the HFP of the integral I.

Applications of Eq. (1) in the BIEs of linear elasticity (in 2 or 3 dimensions) are presented in this
section. In the interest of brevity, only LTBs from inside a body are considered here. Of course, there is
no di�culty in carrying through similar arguments for LTBs from outside a body.

3.1. The (strongly singular) displacement BIE Ð Eq. (1) for I=f@BTik(x,y )ds(y)

Consider (for simplicity) a simply connected body B (an open set) with boundary @B. The standard
integral representation (e.g., Brebbia et al., 1984) for a source point x inside the body B (i.e., x $ B ) is
(Rizzo, 1967):

ui�x� �
�
@B

�
Uik�x, y�tk�y� ÿ Tik�x, y�uk�y�

�
ds�y� �20�

where uk(y) and tk(y) are components of the displacement and traction vectors, respectively, at a ®eld
point y, and ds(y) is an in®nitesimal boundary element. The usual Kelvin kernels Uik and Tik are
available in many references (e.g., Mukherjee, 1982; Brebbia et al., 1984). These kernels, for 3-D
problems, are also given in Appendix A.

The singular BIE for x $ @B can be written in several ways. A CPV form of Eq. (20) with an integral
over an inclusion zone SE is (Dong and Gea, 1998)

ui�x� �
�
ÿ
@B

�
Uik�x, y�tk�y� ÿ Tik�x, y�uk�y�

�
ds�y� ÿ uk�x� lim E40

�
SE

Tik�x, y� ds�y� �21�

while the well known CPV form of Eq. (20) with the corner tensor C is:

Cik�x�uk�x� �
�
ÿ
@B

�
Uik�x, y�tk�y� ÿ Tik�x, y�uk�y�

�
ds�y� �22�

An HFP form of Eq. (20) is:

ui�x� �
@B

�
Uik�x, y�tk�y� ÿ Tik�x, y�uk�y�

�
ds�y� �23�

while the well known regularized (weakly singular) form of Eq. (20), valid at an arbitrary point x, is:

0 �
�
@B

�
Uik�x, y�tk�y� ÿ Tik�x, y��uk�y� ÿ uk�x��

�
ds�y� �24�

From Eqs. (21) and (22), one has:

Cik�x� � dik � lim E40

�
SE

Tik�x, y� ds�y� �25�

while using the rigid body mode in Eq. (22) gives:

S. Mukherjee / International Journal of Solids and Structures 37 (2000) 6623±66346630



ICVP �
�
ÿ
@B

Tik�x, y� ds�y� � ÿCik�x� �26�

From Eqs. (25 and 26):

ICVP � lim E40IE �
�
ÿ
@B

Tik�x, y� ds�y� � lim E40

�
SE

Tik�x, y� ds�y� � ÿdik �27�

Finally, use of the rigid body mode in Eq. (20) (here x $ B ) gives:

dik � ÿ
�
@B

Tik�x, y� ds�y� �28�

while taking the limit of Eq. (28) as x4 @B, one has (Toh and Mukherjee, 1994):

IHFP �
@B

Tik�x, y� ds�y� � ÿdik �29�

From Eqs. (27) and (29), one immediately gets Eq. (1).

3.2. The (hypersingular) stress BIE Ð Eq. (1) for I=f@BIijkl (x,y)ds(y)

This section follows the pattern of the previous one. The stress BIE for x $ B is (Cruse, 1969)

sij�x� �
�
@B

�
Dijk�x, y�tk�y� ÿ Sijk�x, y�uk�y�

�
ds�y� �30�

where sij are stress components and the kernels Dijk and Sijk are given elsewhere (e.g., Cruse, 1969;
Mukherjee et al., 1999), and also in Appendix A (for 3-D problems).

Use of the well known rigid body mode allows one to write Eq. (30) as (Cruse and Van Buren, 1971):

sij�x� �
�
@B

�
Dijk�x, y�tk�y� ÿ Sijk�x, y��uk�y� ÿ uk�x��

�
ds�y� �31�

The stress HBIE for x $ @B can be written in several ways. A partially regularized CPV version of Eq.
(31) with an integral over an inclusion zone is (Dong and Gea, 1998):

sij�x� �
�
ÿ
@B

�
Dijk�x, y�tk�y� ÿ Sijk�x, y��uk�y� ÿ uk�x��

�
ds�y� � uk, l�x� lim E40

�
SE

�
EklmhDijm�x,

y�nh�x� ÿ Sijk�x, y�� yl ÿ xl�
�

ds�y�
�32�

Here E is the usual elasticity tensor.
The second term on the right-hand side of Eq. (32) is the contribution of the integral in Eq. (31)

across a singularity as y4 x. It is obtained by expanding the displacement and traction in Taylor series
as:

uk�y� � uk�x� � uk, l�x�� yl ÿ xl� �O�r2 � �33�

tm�y� � tm�x� �O�r� � Eklmhuk, l�x�nh�x� �O�r� �34�
A CPV version of Eq. (31) with a free term, but without an integral over an inclusion zone, is:
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Lijkl�x�uk, l�x� �
�
ÿ
@B

�
Dijk�x, y�tk�y� ÿ Sijk�x, y��uk�y� ÿ uk�X��

�
ds�y� �35�

while an HFP form of Eq. (30) is:

sij�x� �
@B

�
Dijk�x, y�tk�y� ÿ Sijk�x, y�uk�y�

�
ds�y� �36�

Finally, a regularized (regular in 2-D, weakly singular in 3-D) form of Eq. (36) can be obtained by
using both the rigid body and linear displacement modes in Eq. (30) (Rudolphi, 1991; Lutz et al., 1992).
(The linear mode is given by Eqs. (33 and 34) without the O(r 2) and O(r ) terms in these equations). The
result is:

0 �
�
@B

�
Dijk�x, y��skh�y� ÿ skh�x��nh�y� ÿ Sijk�x, y��uk�y� ÿ uk�x� ÿ uk, l�x�� yl ÿ xl��

�
ds�y� �37�

Cruse and Richardson (1996) have proved that Eq. (37) is valid at an arbitrary source point x provided
that the displacement and stress ®elds satisfy certain conditions. For a detailed discussion of smoothness
requirements and relaxation strategies for singular and hypersingular integral equations, the reader is
referred to Martin et al. (1998).

From Eqs. (32) and (35), one has:

Lijkl�x� � Eijkl ÿ lim E40

�
SE

Iijkl�x, y� ds�y� �38�

where:

Iijkl�x, y� � EklmhDijm�x, y�nk�x� ÿ Sijk�x, y�� yl ÿ xl� �39�
Also, by using the linear displacement mode in Eq. (35), one can show that:

Lijkl�x� �
�
ÿ
@B

Iijkl�x, y� ds�y� �40�

From Eqs. (38) and (40):

Eijkl �
�
ÿ
@B

Iijkl�x, y� ds�y� � lim E40

�
SE

Iijkl�x, y� ds�y� �41�

Finally, use of the linear displacement mode in Eq. (31) gives, for x $ B,

Eijkl �
�
@B

Iijkl�x, y� ds�y� �42�

and taking the limit as x4 @B (Toh and Mukherjee, 1994), one gets:

Eijkl �
@B

Iijkl�x, y� ds�y� �43�

A comparison of Eqs. (41) and (43) veri®es the validity of Eq. (1) in this case as well.
Finally, (as an aside), it is observed that the regularized BIE Eq. (24) relates u and t on @B. In e�ect,

so does the regularized HBIE Eq. (37) since the displacement gradient and stress at x (for x $ @B ) can be
obtained in terms of the traction and tangential displacement derivatives at that point (Cruse and Van
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Buren, 1971; Sladek and Sladek, 1986; Lutz et al., 1992; Mukherjee et al., 1999). It is noted that Eqs.
(24) and (37) must be dependent when collocated at the same point x $ @B. Otherwise, one would be
able to solve an elasticity problem without the need for any boundary conditions!

Appendix A

BIE and HBIE kernels
The Kelvin kernels for the displacement BIE Eq. (20) for 3-D linear elasticity are:

Uik � 1

16pG�1ÿ n�r
��3ÿ 4n�dik � r, ir, k

�

Tik � ÿ 1

8p�1ÿ n�r2
�
f�1ÿ 2n�dik � 3r, ir, kg @r

@n
� �1ÿ 2n��r, kni ÿ r, ink�

�
The corresponding kernels for the stress BIE Eq. (30) are:

Dijk � Eijmn
@Umk

@xn
� 1

8p�1ÿ n�r2
��1ÿ 2n��dikr, j � dkjr, i ÿ djir, k� � 3r, ir, jr, k

�

Sijk � Eijmn
@Tmk

@xn
� G

4p�1ÿ n�r3
�
f�1ÿ 2n�dijr, k � n�dikr, j � djkr, i � ÿ 5r, ir, jr, kg3 @r

@n
� 3n�nir, jr, k

� njr, kr, i � ÿ �1ÿ 4n�nkdij � �1ÿ 2n��3nkr, ir, j � njdki � nidjk

�
In the above, r is the distance between a source point x and a ®eld point y, G and n are the shear

modulus and Poisson's ratio, respectively, dik are the components of the Kronecker delta and, k0@/@yk.
Also, the components of the normal as well as the normal derivative (@r/@ n ) are evaluated at the ®eld
point y.
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